Maternal Exposure to Particulate Air Pollution and Risk of Congenital Heart Defects

Presented by Shaoping Yang
Wuhan Medical & Healthcare Center for Women and Children, China
Study Aim

Evaluate whether maternal exposures to particulate air pollutants during the first three months of pregnancy was associated with an increased risk of congenital heart defects (CHD).
Air Pollution in Wuhan

Construction sites were more than 10,000 in 2013 in Wuhan

Vehicle ownership was 1,320,800 in 2013 in Wuhan

The use of coal for industrial processes
Study population

- June 2011- June 2013
- Pregnant women living in the seven inner-city districts in Wuhan
- Resident population of living >1 year
- Total women: 108,167
Exposure assessment

- Air pollution data have been collected by the WEMC
 - 9 monitoring stations for PM10, and 2 monitoring stations for PM2.5
 - Collection 24 hours-a-day and 365 days-a-year, without interruption
- Concentrations was assigned to each women by a nearest monitor approach
Methods — Statistical analysis

- **Logistic regression** analyses were used to calculate odds ratios (OR) and 95% confidence intervals (CI).

- **Potential confounding factors:** maternal age, education, occupation, newborns sex, parity, season of conception
Association between risk of CHD and PM$_{2.5}$ & PM$_{10}$ during the first 3 months

<table>
<thead>
<tr>
<th></th>
<th>All congenital heart defects (Q20-Q28) (N=188)</th>
<th>Ventricular septal defect (Q21.0) (N=63)</th>
<th>Tetralogy of Fallot (Q21.3) (N=29)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>aOR [95% CI]</td>
<td>aOR [95% CI]</td>
<td>aOR [95% CI]</td>
</tr>
<tr>
<td>PM$_{2.5}$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1st Mb</td>
<td>1.01 (0.93 - 1.09)</td>
<td>1.11 (0.98 - 1.25)</td>
<td>1.05 (0.89 - 1.26)</td>
</tr>
<tr>
<td>2nd Mc</td>
<td>1.10 (1.03 - 1.18)</td>
<td>1.16 (1.03 - 1.30)</td>
<td>1.13 (0.96 - 1.32)</td>
</tr>
<tr>
<td>3rd Md</td>
<td>1.08 (1.01 - 1.16)</td>
<td>1.21 (1.08 - 1.36)</td>
<td>1.03 (0.87 - 1.22)</td>
</tr>
<tr>
<td>PM$_{10}$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1st Mb</td>
<td>0.94 (0.89 - 1.01)</td>
<td>0.97 (0.87 - 1.09)</td>
<td>0.84 (0.71 - 1.01)</td>
</tr>
<tr>
<td>2nd Mc</td>
<td>0.99 (0.92 - 1.05)</td>
<td>0.96 (0.86 - 1.07)</td>
<td>0.99 (0.84 - 1.17)</td>
</tr>
<tr>
<td>3rd Md</td>
<td>0.98 (0.93 - 1.05)</td>
<td>0.99 (0.90 - 1.10)</td>
<td>1.00 (0.85 - 1.17)</td>
</tr>
</tbody>
</table>

a. Adjusted for maternal age, education, parity, infant sex, season of conception
b. 1st M=The first month exposure; c. 2nd M=The second month exposure; d. 3rd M=The third month exposure;
Association between risk of VSD and PM$_{2.5}$ during the first 12 weeks

Figure 2: Estimated adjusted ORs and 95% CIs of Ventricular septal defect for continuous measures of 1 week averages of daily measures of PM$_{2.5}$, plotted for weeks 1-12 pregnancy.
Conclusion

- Our results showed an increased risk of CHDs in relation to maternal exposure to PM2.5, but showed no association between PM10 exposure and CHDs.

- This study contributes to the small body of knowledge regarding the association between in utero exposure to air pollution and CHDs, but confirmation of these associations will be needed in future studies.
Acknowledgements

- **Wuhan Medical & Healthcare Center for Women and Children**
 Dr. Bin Zhang, Shaoping Yang, Rong Yang, Jinzhu Zhao, Ronghua Hu, Yiming Zhang

- **Saint Louis University College for Public Health and Social Justice**
 Pro. Zhengmin Qian, Jing Wang, Louise H. Flick

- **Yale School of Public Health**
 Pro. Tongzhang Zheng

- **Wuhan Environmental Monitoring Center**
 Shengwen Liang, Ke Hu
Thank you